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Culturing and direct PCR suggest prevalent host generalism
among diverse fungal endophytes of tropical forest grasses

K. Lindsay Higgins
Phyllis D. Coley
Thomas A. Kursar

Department of Biology, University of Utah, Salt Lake
City, Utah 84112

A. Elizabeth Arnold'

Division of Plant Pathology and Microbiology, School of
Plant Sciences, University of Arizona, Tucson, Arizona
85721

Abstract: Most studies examining endophytic fungi
associated with grasses (Poaceae) have focused on
agronomically important species in managed ecosys-
tems or on wild grasses in subtropical, temperate and
boreal grasslands. However grasses first arose in
tropical forests, where they remain a significant and
diverse component of understory and forest-edge
communities. To provide a broader context for
understanding grass-endophyte associations we char-
acterized fungal endophyte communities inhabiting
foliage of 11 species of phylogenetically diverse Cs
grasses in the understory of a lowland tropical forest
at Barro Colorado Island, Panama. Our sample
included members of early-arising subfamilies of
Poaceae that are endemic to forests, as well as more
recently arising subfamilies that transitioned to open
environments. Isolation on culture media and direct
PCR and cloning revealed that these grasses harbor
speciesrich and phylogenetically diverse communities
that lack the endophytic Clavicipitaceae known from
diverse woodland and pasture grasses in the temper-
ate zone. Both the incidence and diversity of
endophytes was consistent among grass species
regardless of subfamily, clade affiliation or ancestral
habitat use. Genotype and phylogenetic analyses
suggest that these endophytic fungi are predominant-
ly host generalists, shared not only among distinctive
lineages of Poaceae but also with non-grass plants at
the same site.
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INTRODUCTION

Comprising at least 9000-10000 food, forage and
ecologically significant species, grasses (Poaceae)
provide the bulk of plant biomass across > 20% of
earth’s land surface and represent the most important
plant family in human sustenance (Hall and Scurlock
1991). The physiological effects of the endophytic
fungi they harbor and the alkaloids that some of those
endophytes produce in planta affect forage quality,
host fitness and community and ecosystem processes,
prompting extensive study by agronomists, ecologists,
evolutionary biologists and mycologists over the past
two decades (e.g. Clay 1988, Malinowski and Belesky
1999, Saikkonen et al. 2000, Ahlholm et al. 2002,
Faeth and Sullivan 2003, Cheplick 2004, Faeth et al.
2004, Schardl et al. 2004, Tintjer and Rudgers 2006,
Morse et al. 2007, Novas et al. 2007, Rudgers and Clay
2007, Shipunov et al. 2008, Rodriguez et al. 2009,
Rudgers and Swafford 2009).

Such studies traditionally have focused on grami-
nicolous Clavicipitaceae, including Atkinsonella, Ba-
lansia, Balansiopsis, Epichloé, Myriogenospora and
Neotyphodium (reviewed by Siegel et al. 1987, Saikko-
nen et al. 1998, Clay and Schardl 2002). Fungal
endophytes in these genera are referred to as
““clavicipitaceous endophytes”” and recently were
categorized as Class 1 endophytes by Rodriguez et
al. (2009). They grow systemically within aerial tissues
and share the general trait of alkaloid production, yet
exhibit a diversity of transmission modes and effects
on host ecology (Siegel et al. 1987, Clay and Schardl
2002, Rodriguez et al. 2009). As a group they vary in
host specificity; some genera specialize on grasses in
particular subfamilies or with a particular photosyn-
thetic strategy (i.e. Cg vs. C4 pathway), whereas others
associate with several subfamilies and/or infect hosts
that differ in photosynthetic pathways and associated
leaf architecture (Clay 1984, 1989, 1990; Siegel et al.
1987; Clay and Schardl 2002; Faeth and Fagan 2002).

Complementing these Class 1 endophytes are the
phylogenetically diverse fungi that occur within
above-ground tissues of all major lineages of land
plants. These Class 3 endophytes (Rodriguez et al.
2009) occur in mosses and liverworts, ferns and allies,
and diverse seed plants in agro ecosystems and
natural plant communities ranging from tundra to
tropical forests (e.g. Arnold and Lutzoni 2007, Arnold
etal. 2009). Class 3 endophytes form localized instead
of systemic infections, typically spread by horizontal
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transmission, and often are species-rich within indi-
vidual hosts and host tissues (e.g. Lodge et al. 1996,
Herre et al. 2007). Their high diversity in planta
presents a challenge for interpreting their costs and
benefits to hosts, but investigations of several endo-
phyte associations suggest that individual species and
mixed-species assemblages can alter host physiology
and defense against antagonists (e.g. Arnold et al.
2003, Arnold and Engelbrecht 2007, Herre et al.
2007). Some authors have suggested that their
diversity might play an indirectly host-protective role
(see Carroll 1991): Dense infections by diverse fungi
might generate a heterogeneous chemical landscape
within and among plant tissues and individuals,
potentially constraining the evolution of specialist
herbivores or pathogens or defending against diverse
antagonists in speciesrich settings such as tropical
forests (Arnold 2008).

We are broadly interested in understanding the
suite of biotic and abiotic factors that shape fungal
endophyte communities. Even though most studies
have focused on the incidence and importance of
clavicipitaceous endophytes in grasses (reviewed by
Siegel et al. 1987, Clay and Schardl 2002, Rudgers and
Clay 2005), some Poaceae harbor only Class 3
endophytes, whereas others simultaneously host
endophytes from both Class 1 and Class 3 (e.g.
Schulthess and Faeth 1998). The relative importance
of subfamily placement and associated evolutionary
history of hosts, photosynthetic pathway and associat-
ed leaf architecture, introduced versus native status,
pressure from antagonists, and abiotic features of
habitat in affecting the colonization of grasses by
Class 1 and Class 3 endophytes has not been fully
resolved, in part reflecting a paucity of studies
examining endophytes of diverse Poaceae in their
native environments. To date most studies of wild
grasses have focused on grassland ecosystems, espe-
cially in the subtropics, temperate zone and boreal
regions (e.g. Saikkonen et al. 2000, Zabalgogeazcoa et
al. 2003). However Poaceae first arose and diversified
in the shaded margins of tropical forests (Kellogg
2001), where they remain a significant and diverse
component of understory- and forest-edge communi-
ties (e.g. Croat 1978).

The goal of our study was to provide a broader
context for understanding grass-endophyte associa-
tions by examining foliar endophytic fungi in
phylogenetically diverse grasses in the understory of
a lowland tropical forest. Here we used culture-based
and direct-PCR approaches to examine endophytes
associated with 11 co-occurring species in six subfam-
ilies of Poaceae at Barro Colorado Island, Panama.
Our sample included early-arising subfamilies that are
endemic to forest environments, as well as more

recently arising subfamilies that transitioned to
grassland environments. Our study provided a frame-
work for evaluating currently available tools for
designating operational taxonomic units (OTUs)
from sequence data and revealed that these forest
grasses harbor diverse Class 3 endophytes that are (i)
predominantly host generalists with regard to grass
subfamilies, clades and ancestral habitat, and (ii)
shared with diverse non-grass hosts at the same site.

MATERIALS AND METHODS

Study site and host taxa.—This study was conducted at Barro
Colorado Island, Panama (BCI; ~ 9°9'N, 79°51'W), which
was isolated by the creation of Gatun Lake in 1914 for
construction of the Panama Canal. BCI is composed of
secondary forest (approximately 100 y old) and mature
forest (> 400y old) and currently is maintained as part of a
forest reserve by the government of Panama. Since 1946
research on the ca. 1400 ha island has been coordinated by
the Smithsonian Tropical Research Institute.

Eleven locally common species representing six subfam-
ilies of Poaceae (sensu Barker et al. 2001, Kellogg 2001)
were chosen for this study (TABLE I). All are perennial Cg
grasses that occur frequently in the understory of primary
and secondary forest (Croat 1978). Anomochlooidae and
Pharoideae are early-arising lineages of ancestrally forest-
dwelling grasses (Kellogg 2001, Edwards and Smith 2010).
Bambusoideae and Ehrhartoideae comprise forest grasses
and are sister to the Pooideae, which transitioned to open
habitats (Kellogg 2001). Together the three families form
the ancestrally forest-dwelling BEP clade (sensu Barker et al.
2001). Centothecoideae and Panicoideae are members of
the PACCAD clade (sensu Barker et al. 2001) and represent
lineages that transitioned to open habitats (Kellogg 2001,
Edwards and Smith 2010) (TABLE I).

Field sampling.—Sampling was conducted in the early rainy
season, May—Jun 2006, 2007, in sites with light to medium
canopy cover and a relatively open understory along BCI’s
island-wide trail system. Each species was collected at six
sites (except Rhipidocladum, which was collected at five;
SUPPLEMENTARY TABLE I). Sites were spaced as widely as
possible around the island for the purposes of a concurrent
study (Higgins 2008); the closest sites were separated by less
than 3 m and the farthest sites were 5.4 km distant (on
opposite sides of the island). Multiple host species were
sampled within sites when possible. Data regarding spatial
distributions of endophytes are evaluated in Higgins (2008)
and Higgins et al. (in review).

Isolation of endophytes.—One overtly healthy, mature leaf
was collected from each of three plants per species per site
(except for a few cases in which only two individuals were
available per site; TABLE I), stored in a clean plastic bag and
transported to the lab. Within 6 h leaves were washed with
running tap water and cut into 2 mm?® pieces, which were
surface-sterilized with sequential washes of 70% EtOH
(2 min), 10% bleach (0.5% NaOCI; 2 min) and 95% EtOH
(30's) (Arnold and Lutzoni 2007). Fifteen segments per leaf
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(2925 segments total) were selected at random and plated
onto 2% malt extract agar (MEA), which promotes growth
by diverse endophytes (Frohlich and Hyde 1999, Arnold
2002). Plates were sealed with Parafilm® and incubated at
room temperature 12 wk with approximately 12 h light/
dark cycles. Emergent hyphae were isolated immediately
into pure culture on 2% MEA, allowed to grow 7-14 d and
sorted into morphotypes based on culture morphology and
pigmentation (Arnold 2002). Vouchers of all isolates were
deposited in the culture collection of the International
Cooperative Biodiversity Group at the Smithsonian Tropical
Research Institute (Panama).

DNA extraction and sequencing.—Small pellets of mycelium
were stored in 500 puL. 2% SDS extraction buffer before DNA
extraction following Arnold and Lutzoni (2007). DNA was
extracted from all cultures; from these we selected 402
isolates for sequencing with the goal of maximizing
morphological diversity in our sample. Representatives of
all morphotypes were sequenced, and morphotypes were
sequenced in proportion to their abundance. Isolates
selected for sequencing represented all host species and
study sites (SUPPLEMENTARY TABLE I).

We amplified the nuclear ribosomal internal transcribed
spacers and 5.8s gene (nrITS) and ca. 600 bp of the large
ribosomal subunit (LSU) as a single fragment with primers
ITS5 or ITS1F (White et al. 1990, Gardes and Bruns 1993)
and LR3 (Vilgalys and Hester 1990). Each 25 pL. PCR
reaction mixture contained 12.5 pL. Sigma RedTaq (Sigma-
Aldrich, St Louis, Missouri), 10 pL. water, 1 pL. each primer
(10 uM) and 0.5 pL. DNA template (Hoffman and Arnold
2008). Cycling conditions followed Higgins et al. (2007)
with a 54 C annealing temperature and 90 s extension. Gel
electrophoresis (1% agarose in TAE) and staining with
SYBR green revealed single bands for each product.

Amplicons were cleaned, normalized and sequenced in
both directions at the Genomics and Technology Core
facility at the University of Arizona on an AB3730x! DNA
Analyzer (Applied Biosystems, Foster City, California) with
PCR primers (5 uM). Forward and reverse reads were
assembled and bases called by phred and phrap (Ewing et al.
1998) with automation provided by Mesquite (Maddison
and Maddison 2007). Assembled reads were edited manu-
ally in Sequencher 4.5 (Gene Codes Corp., Ann Arbor,
Michigan) and consensus sequences submitted to BLAST
queries of the NCBI GenBank database for preliminary
identification at higher taxonomic levels. Sequences from
402 cultured endophytes and 46 clones (below) were
submitted to GenBank under accession numbers
EU686744-EU687191.

Direct PCR.—One leaf from each of two individuals of
Panicum, Oplismenus, Orthoclada, Streptochaeta and Strepto-
gyna, and three individuals of Pharus and Rhipidocladum,
was selected arbitrarily for direct PCR (TABLE II). Leaf tissue
was surface-sterilized as described above. One ca. 0.5 cm?
segment per leaf was placed in 750 ul. CTAB buffer and
homogenized by grinding with miniature pestle and sterile
sand (Arnold et al. 2007). DNA extraction and amplifica-
tion followed the methods listed above, except that the
volume of template DNA was increased to 1.5 uL, the

TABLE II.  Results of direct-PCR survey of endophytic fungi
associated with seven focal species of grasses at BCI: number
of clones sequenced and OTUs based on 99% nrITS-partial
LSU sequence similarity inferred in Sequencher (Seq) and
FastGroupll (FGII)

Genotype groups

Host Leaves Sequences  Seq FGII
Oplismenus 2 3 3 3
Orthoclada 2 5 5 5
Panicum 2 5 3 4
Pharus 3 8 8 8
Rhipidocladum 3 13 12 12
Streptochaeta 2 6 5 6
Streptogyna 2 6 5 6

Cumulative® 16 46 29 41

* Cumulative values for richness represent pooled analyses
of all 46 sequences in each analysis program, instead of a
sum of groups found per host species.

volume of water decreased correspondingly and the PCR
cycle extension increased to 2 min. Sterile water was used in
place of template for controls in each reaction. This surface-
sterilization method prevents accidental amplification of
fungal DNA from the leaf surface (Arnold et al. 2007,
Gallery et al. 2007). We found no evidence that ITS1F and
LR3 amplified plant DNA.

Gel electrophoresis of PCR products with SYBR Green
rarely yielded visible bands. To recover fungal amplicons we
used a Strataclone PCR Cloning Kit (Stratagene, La Jolla,
California) according to the manufacturer’s instructions,
except that one-half the recommended reagent volumes
were used for each reaction. After blue/white screening
successfully transformed colonies were transferred to new
plates and incubated an additional 24 h to increase colony
size. Eight positive clones per leaf were amplified in
secondary PCR with primers ITSIF and LR3. Based on
relative gel position after electrophoresis, up to five
amplicons of different lengths were selected for sequencing
as described above.

Inference of genotype groups.—We designated taxonomic
units on the basis of percent sequence similarity (O’Brien et
al. 2005, Arnold and Lutzoni 2007, Gallery et al. 2007,
Hoffman and Arnold 2008). This approach provides a
metric for estimating richness, diversity and composition in
the absence of robust phylogenetic species definitions,
which are difficult to achieve in single-ite, single-guild
biodiversity surveys (Arnold et al. 2007, U’Ren et al. 2009).
A threshold of 95% similarity at the nrITS locus has been
shown to correspond to phylogenetically delimited species
in four genera of Sordariomycetes and Dothideomycetes
that are commonly recovered as tropical endophytes
(Botryosphaeria, Colletotrichum, Mycosphaerella, Xylaria;
U’Ren et al. 2009), all of which were recovered in this
study. Incorporation of the first ca. 600 bp of LSU does not
affect the quality of these species-boundary estimates
(U’Ren et al. in press). Accordingly we used a threshold
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of 95% nrlITS-partial LSU sequence to designate putative
species. Because our study examined confamilial host
species over a small geographic scale we used operational
taxonomic units based on 99% sequence similarity (1%
divergence) to obtain a more detailed view of the
distribution of strains among hosts while still allowing for
small amounts of sequencing error (Gallery et al. 2007).

OTUs initially were assembled with Sequencher 4.6 (99%
similarity, = 40% overlap; Arnold et al. 2007, 2009; U’Ren et
al. 2009) and the dereplication program FastGrouplI (Yu et
al. 2006; http://biome.sdsu.edu/fastgroup/; percent se-
quence identity algorithm; PSI = 99%). The number and
composition of OTUs differed markedly between Se-
quencher and FastGroupll outputs (see RESULTS), prompt-
ing us to validate their output through phylogenetic
analyses (below). On the basis of strong phylogenetic
support in two focal genera we used the much more
reliable OTUs obtained from Sequencher to determine
richness, diversity and host affinity, with OTUs defined by
99% nrITS-partial LSU sequence similarity.

Genotype analyses.—Taxon accumulation curves were con-
structed in EstimateS (Colwell 2009) with bootstrap estimates
of total richness and randomized resampling to ensure
comparable sample sizes and sampling intensity of hosts.
Diversity was measured by Fisher’s o, which is robust to
differences in sample size (see Arnold and Lutzoni 2007).
Isolation frequency and diversity were compared among
subfamilies, clades (defined functionally as the BEP clade,
PACCAD clade and the group defined by early-arising
lineages) and with regard to ancestral habitat use (forest,
open habitat; TABLE I) by ANOVA or #tests. Similarity indices
based on presence-absence data (Jaccard’s index) and
isolation frequencies (Morisita-Horn index) of nonsingleton
OTU were calculated for each pairwise combination of host
species, and within versus between subfamily, clade or
ancestral habitat values were compared by ANOVA. A
goodness-of-fit test was used to examine the observed versus
expected distribution of fungal OTU from grasses versus
woody plants after comparison of sequences obtained in this
study against an existing database of 1135 isolates from
woody plants at BCI (Arnold and Lutzoni 2007, Arnold et al.
2009, Arnold unpubl data). Statistical analyses were conduct-
ed in R 2.6.2 (R Development Core Team 2008) with the
vegan and LabDSV packages (http://www.cran.r-project.org)
and in JMP 7.0.2 (SAS Institute 2007).

Phylogenetic analyses.—OTU-level analyses were comple-
mented with phylogenetic analyses to assess the quality of
genotype groupings and BLAST-based identification, as well
as the relationships of endophytes obtained by culturing
and direct PCR. We focused on Anthostomella (Xylariaceae,
Xylariales, Sordariomycetes) and Colletotrichum (Phylla-
choraceae, Phyllachorales, Sordariomycetes), two genera
that were common among cultures and clones from grasses
(SUPPLEMENTARY TABLE II) and as endophytes of non-grass
plant hosts at BCI (SUPPLEMENTARY TABLE III).

For each genus representative sequences from GenBank
were aligned in Clustal X 2.0.12 (Larkin et al. 2007) with
novel sequences from endophytes at BCI. Taxon sampling
of currently recognized species was based on recent studies

(e.g. graminicolous Colletotrichum, Crouch et al. 2009) and/
or drew from the available diversity of species with vouchers
or high-quality GenBank records (Anthostomella). For
Anthostomella the dataset comprised 11 sequences from
GenBank and 43 sequences from BCI (eight isolates from
non-grass hosts, 22 isolates from grasses and 13 clones from
grasses). For Colletotrichum the dataset comprised 24
sequences from GenBank and 92 sequences from BCI (33
isolates from woody plants, 50 isolates from grasses and nine
clones from grasses). Endophytes from non-grass hosts were
isolated, vouchered and sequenced as per above (host
information provided in SUPPLEMENTARY TABLE III).

The alignment for each dataset was adjusted manually in
Mesquite (Maddison and Maddison 2007) and evaluated in
jModelTest (Posada 2008, Guindon and Gascuel 2003)
to infer the appropriate model of evolution (in each case
GTR + I + gamma) for Bayesian and maximum likelihood
analyses. In the former two sets of four independent runs
were conducted for each dataset in MrBayes 3.1.2 (Ronquist
and Huelsenbeck 2003), in each case for 3000000
generations with sampling every 1000th tree. Runs were
terminated after the average standard deviation of split
frequencies fell below 0.01. Two thousand trees from the
posterior of each Bayesian analysis were used to infer a
majority rule consensus tree in Mesquite (Maddison and
Maddison 2007) after discarding 1002 trees per run as burn-
in based on examination of —In li values. Branch support
was determined from Bayesian posterior probabilities.
GARLI (Zwickl 2006) was used both for maximum
likelihood inference and bootstrap analyses of branch
support (100 replicates). Consensus trees from Bayesian
analyses were congruent with the most likely trees obtained
in GARLI and are displayed with taxon names annotated to
indicate host genus and subfamily, OTU based on
Sequencher and FastGroupll and BLAST-based identifica-
tion.

RESULTS

Endophytic fungi were recovered in culture from
every individual examined. In sum 2264 isolates were
obtained from 2925 leaf segments. Isolation frequen-
cy was ca. 44-91% of 2 mm?® segments per leaf per
species and did not differ significantly with regard to
grass subfamily, clade or ancestral habitat (TABLE I).

Among 402 representative isolates we recovered
245 distinct nrITS-partial LSU sequence types (based
on 100% sequence similarity), of which 195 were
found only once. Analysis in Sequencher indicated
that these comprise 94 putative species and 124 OTUs
based on 95% and 99% sequence similarity respec-
tively (TABLE I, FIG. 1). Analysis of the same dataset in
FastGroupll enumerated twice as many OTUs (Ta-
BLE I). Cumulative diversity (Fisher’s o) for the
sample was 4.6fold greater based on FastGroupll
versus Sequencher-delimited OTU, and mean diver-
sity per host species was estimated to be sixfold
greater with FastGroupll (TABLE I).
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F1G. 1. Richness of endophytic fungi associated with 11 species of grasses at BCI, Panama. A. Accumulation of putative
species among cultures (estimated in Sequencher with 95% sequence similarity), 95% confidence interval (fine dotted lines)
and bootstrap estimate of species richness (solid gray line). B. Accumulation of OTUs among cultures estimated in
Sequencher (99% sequence similarity). C. Accumulation of genotype groups among cultures estimated in FastGroupll (99%
sequence similarity). (For panels A—C, observed values are shown with a solid black line, confidence intervals are shown with
fine dotted lines and bootstrap estimates are shown with a solid gray line). D. Accumulation of OTUs from culturing (large
dashed line) and direct PCR (solid black line) given a sample size of 46 sequences, with values for cultures inferred with means
from 50 random draws of 46 sequences from the observed richness of cultured genotypes; 95% confidence intervals (fine
dotted lines) and bootstrap estimate (gray solid line) shown for direct PCR.

Phylogenetic analyses for two focal genera show
that Sequencher-delimited OTUs generally agreed
with phylogenetic results, whereas FastGroupll mark-
edly overestimated the number of OTUs and pro-
duced groups that were incongruent with phylogenies
(F1Gs. 2, 3). Accordingly we used OTUs inferred in
Sequencher (based on 99% sequence similarity) for
further analyses.

Taxon accumulation curves were non-asymptotic,
with bootstrap estimates of OTU richness falling
outside the 95% confidence intervals around ob-
served richness (FI1G. 1). Overall 62.8% of OTUs were
found only once. Diversity of endophytes did not

differ significantly as a function of grass subfamily,
clade or ancestral habitat (TABLE I).

Host specificity of cultured isolates.—Ninety percent of
OTUs recovered more than once (i.e. nonsingletons)
occurred in multiple host genera. When analyses were
repeated with genotype groups based on 100%
sequence similarity, 94% of nonsingletons were
recovered from more than one genus. Jaccard’s index
of similarity was significantly higher among species
within the same subfamily than among hosts in
different subfamilies, but the difference (JI = 0.06)
is not likely to be biologically significant (TABLE III).
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TABLE III. Mean similarity values for endophyte communities of eleven grass species, calculated on the basis of presence/
absence only (Jaccard’s index, JI) and isolation frequency (Morisita-Horn index, MH) for nonsingleton OTUs only, as a

function of host subfamily

Index Within-subfamily Between-subfamily F df P
JI 0.31 (0.27-0.34) 0.25 (0.22-0.27) 8.92 1, 53 0.0043*
MH 0.69 (0.61-0.76) 0.64 (0.61-0.68) 1.08 1, 53 0.3039

*Although analyses of JI indicate that species in the same subfamily have significantly more similar endophyte communities
than species in different subfamilies, the difference is not likely to be biologically significant.

We found no evidence of greater similarity based on
shared membership in clades or similar ancestral
habitat (data not shown). When isolation frequency
was taken into account, there was no apparent
structure based on host subfamily (Morisita-Horn
values, TABLE III) or of clade or ancestral habitat
(data not shown). OTUs belonging to Anthostomella
and Colletotrichum showed no evidence of phyloge-
netic structure based on the species, subfamily, clade
or ancestral habitat of hosts (FIGS. 2, 3; TABLE I).

Taxonomic composition of cultured isolates.—Top
BLAST matches for all 402 sequences were to
members of the Pezizomycotina, including 348
isolates with closest matches to fungi that were
identified unequivocally to class. Examination of
these results indicated that > 90% were Sordariomy-
cetes, representing 10 orders and approximately 14—
16 families. Xylariales and Phyllachorales were partic-
ularly common. The remainder included diverse
lineages of Dothideomycetes and a small number of
Eurotiomycetes (TABLE IV). Four isolates matched
Claviceps fusiformis as their top BLAST hit (SUPPLE-
MENTARY TABLE II); however in these cases both the
query coverage and maximum identity value were
below 90%, non-clavicipitaceous fungi yielded similar
query coverage and maximum identity values, and
phylogenetic analyses could not place these strains
with certainty within the Clavicipitaceae (data not
shown). No other sequences were consistent with
clavicipitaceous fungi. Phylogenetic analyses of An-
thostomella and Colletotrichum demonstrate that
BLAST matches to named species markedly underes-
timated endophyte richness and frequently misiden-
tified isolates at the species level (FIGS. 2, 3).

Direct PCR.—Forty-six clones obtained from direct
PCR yielded 29 OTUs (TABLE IV, FIG. 1). Sequencing
of up to five clones per leaf yielded an average of
2.9 = 1.3 OTU per 0.5 cm? leaf tissue (1-5 OTU). No
sequence obtained by direct PCR was consistent with
a clavicipitaceous species (SUPPLEMENTARY TABLE II).
Cloning and culturing approaches yielded similar
OTU richness given a similar sampling effort. The
number of OTUs obtained by cloning did not differ

significantly from the number represented in random
draws of 46 cultured isolates (mean * SE from 1000
draws, each representing 46 isolates from two to three
leaves of the seven host species used for direct PCR:
278 £ 2.7, 95% CI = 26.3-29.2 OTUs; FiG. 1).
However increasing our sequencing sample by 46
clones yielded an overall increase in Fisher’s o from
60.1 (124 OTUs, 402 sequences; TABLE I) to 70.5 (141
OTUs, 448 sequences). Despite a ninefold larger
sample from culturing, > 55% of OTU obtained by
cloning never were found in our much larger
culturing effort (SUPPLEMENTARY TABLE II). Two
classes (Pezizomycetes, Leotiomycetes) were found
only by direct PCR (TABLE 1V).

Phylogenetic analyses of Anthostomella and Colleto-
trichum illustrate that sequences obtained by direct
PCR frequently represented either novel OTUs within
clades also recovered by our larger culturing effort or
OTUs that matched those recovered by culturing
(F1Gs. 2, 3). However in Colletotrichum several clones
represented distinct lineages relative to sequences
available in GenBank and our cultured isolates
(F1G. 3).

Comparison with endophyte communities of non-
grass hosts.—We compared 402 sequences from
grasses against 1135 nrITS sequences for endophytes
of 37 non-grass species in 23 families surveyed
contemporaneously for endophytic fungi at BCI
(SUPPLEMENTARY TABLE IV). The resulting dataset of
1537 sequences represented 252 OTUs. Among 113
nonsingletons 34% were found only in non-grasses,
54% in both non-grasses and grasses and 12% only in
grasses. The percent of OTUs containing endophytes
from grasses (75 of 113 nonsingleton genotypes,
66.4%) was significantly higher than expected given
the representation of grass endophytes in the sample
(28% of isolates; G; = 12.68, P = 0.0004), consistent
with a high degree of overlap among endophytes of
grasses and non-grasses.

Phylogenetic analyses of Anthostomella and Colleto-
trichum frequently reconstructed isolates from grasses
as close relatives of isolates from non-grass hosts. In
general topologies do not reflect a strong signal of
host taxonomy or phylogenetic relationships (FIGS. 2,
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3). Several well supported clades comprising only
grass endophytes were recovered, but in the absence
of further sampling and in light of our OTU-level
analyses it is premature to conclude that these are
specialist genotypes or clades that occur only in
Poaceae.

DISCUSSION

In contrast to hundreds of papers focusing on Class 1
endophytes (i.e. clavicipitaceous endophytes; Web of
Science, Mar 2009), relatively few have examined the
diversity of non-clavicipitaceous endophytes (Class 3)
in grasses, particularly in wild species (but see
Schulthess and Faeth 1998, Chiang et al. 2001, Wirsel
et al. 2001, Hyde et al. 2002, Marquez et al. 2007). In
grassland ecosystems, studies of undomesticated
grasses frequently detect Class 1 endophytes, in
contrast to the prevalence of Class 3 endophytes in
related but cultivated grasses such as maize, rice,
wheat (Tian et al. 2004, Larran et al. 2007, Pan et al.
2008, Saunders and Kohn 2009) and certain bamboos
(e.g. in temperate Japan, Morakotkarn et al. 2007).
Because grasses arose and first diversified in associa-
tion with the shaded margins of tropical forests
(Kellogg 2001) the goal of our study was to examine
the endophyte communities associated with phyloge-
netically diverse, wild grasses in a tropical forest
understory.

The few studies examining fungal endophytes of
wild grasses in forests have recovered Class 1 endo-
phytes in diverse Poaceae from temperate woodlands
(e.g. Clay and Leuchtmann 1989, Schulthess and Faeth
1998). Studies have isolated clavicipitaceous endo-
phytes on MEA (e.g. Schulthess and Faeth 1998,
Marshall et al. 1999, Gentile et al. 2005, Wei et al.
2006, Moon et al. 2007), and the primers used in our
direct-PCR analyses successfully amplified Class 1
endophytes in a related study (U'Ren et al. in press).
Although taxon-accumulation curves were non-asymp-
totic and only 80% of estimated genotypic richness was
recovered (TABLE I, FIG. 1), our results provide strong
evidence that clavicipitaceous endophytes are not a
significant component of the fungal community of
these forest grasses. Instead Class 3 endophytes were
consistently abundant and diverse among grasses that
differed in subfamily placement, clade affiliation and
ancestral habitat use (TABLE I).

Consistent with studies of endophytes in woody
plants at BCI (Arnold et al. 2000, 2001, 2003), more
than 62% of OTUs found in this study were recovered
only once. The large number of rare taxa constrains
community-wide inferences of host specificity because
host affiliations of only a minority of OTU can be
considered. Even so we found that at least 90% of

nonsingleton OTUs occurred in more than one
genus of Poaceae. This host-generalism is strongly
supported not only by OTU analyses based on 99%
sequence similarity (TABLE III) but also by genotype
analyses based on 100% sequence identity (data not
shown) and phylogenetic analyses in two focal genera
(FiGs. 2, 3). It is possible that nrITS-partial LSU data
are insufficient to diagnose host specificity, especially
in closely related and geographically proximate hosts;
the limitations of this locus for fine-scale analyses in
genera such as Colletotrichum are becoming clearer
(Rojas et al. 2010) and future work will require
additional loci for confirmation. However, given the
tools currently available in large-scale surveys of
fungal diversity, our data argue strongly for host
generalism among endophytes of these forest grasses.
This observation is consistent with the suggestion by
Arnold and Lutzoni (2007) that the most common
tropical forest endophytes appear to be host gener-
alists (see also Cannon and Simmons 2002).

Because our study was focused on confamilial plant
species within a small geographic area it might be
predisposed to conclusions of host generalism; many
other organisms that associate with tropical plants
tend to be specialized at the level of plant family
instead of species or subfamily (e.g. herbivorous
insects; Barone 1998). However comparisons between
communities of endophytes in grass- and non-grass
hosts at BCI suggest little to no specificity at the family
level. When viewed through the lens of genotype and
phylogenetic composition of their endophyte com-
munities these grasses are indistinguishable from
non-grass hosts at the same site. Although phyloge-
netic analyses suggest that some clades might consist
of only grass-inhabiting taxa, the overall dataset
suggests that further sampling will reveal that these
clades, like others reconstructed here, comprise taxa
with an apparently wide host range.

When used in concert, culture-based isolation and
direct amplification of fungal DNA from host tissue
each reveal a unique but complementary view of the
overall endophyte community (see also Allen et al.
2003, Arnold et al. 2007). Here direct PCR indicated
that ca. three genetically distinct fungi reside in each
0.5 cm® piece of leaf tissue in our focal grasses.
Considering the limited sampling effort per leaf and
potential limitations of our primers, it is likely that
species richness was underestimated. Direct PCR did
not recover a greater diversity of fungi than for
culture-based isolation with a comparable sampling
effort but instead enabled detection of distinctive
fungal OTUs that increased the overall diversity of the
sample. Direct PCR also recovered two classes,
Pezizomycetes and Leotiomycetes, not found previ-
ously in culture-based studies of diverse angiosperms
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Colletotrichum acutatum AJ749689
Colietotrichum acutatum AJ749688
Colletotrichum acutatum AJ749673
Colietotrichum acutatum AJ749681
99/927 Colletotrichum acutatum AJ749679
C45 Pharus latifolius + PHA (137, LS; C. truncatum)
P648 Piper
98/80 I P150B Garcinia madruno
P4B Psychotria fimonensis
109 Panicum pifosum « PAN (1, IX; C. gloeosporioides)
1401 Chusquea simplicifiora* BAM (18, GY; C. gloeosporioides)
96/751] 559 Oplismenus hirtellus « PAN (48, HP; C. gloeosporioides)
70176 P112A Psychogrlav /lmonen§/s
P128B Psychotria limonensis
93/87y 1390 Chusquea simplicifiora« BAM (16, DZ; C. gloeosporioides)
08/63|" 423 Streptogyne americana+ EHR (18, BA; C. gloeosporioides)
592 Oplismenus hirteflus « PAN (44, DK; G. cingulata)
P229 Chrysophylium cainito
1275 Rhipidociadum racemifforum « BAM (11, R; C. gloeosporioides)
C7 Rhipidocfadum racemifforum » BAM (44, LG; C. boninense)
1162 Rhipidocladum racemifiorum« BAM (6, CO; C. truncatum)
P43B Psychotria fimonensis
P228 Chrysophyfium cainito
C49 Rhipidocladum racemifiorum « BAM (6, LQ; Colletotrichum sp.)
€50 Rhipidocladum racemifiorum » BAM (141, KJ; C. coccodes)

2182 Lithachne paucifiora+ BAM (98, DR; Colletotrichum sp.)

73/53
84/-

Colletotrichum dematium EU554176.1
98/93| Cotietotrichum dematium EU554175.1
Glomerelia truncata EU5541863.1

I 404 Pharus latifolius « PHA (115, ID; unclear)
590 Olyra latifolia « BAM (119, GD; G. cingulata)
2116 Lithachne paucifiora* BAM (94, AU; C. truncatumy)
5/691 P859 Cecropia peltata
o9/76| 390 Streptogyna americana« EHR (20, DM; C. truncatum)
C17 Rhipidociadum racemififorum « BAM (20, KS; C. coccodes)
P250A Chrysophylium cainito
2035 Rhipidociadum racemifiorum« BAM (20, DM; C. truncatum)
577 Opfismenus hirtelfus « PAN (20, DM; C. truncatum)
1434 Orthoclada faxa» CEN (20, GX; C. truncatum)
C16 Rhipidociadum racemiflorum « BAM (20, KS; C. coccodes)
363 Qlyra latifolia « BAM (20, KS; Colletotrichum sp.)

99/96 | Glomereila graminicola DQ195708
| Colletotrichum sublineolum DQO03113

Colietotrichum sublineo/um DQ0O03115
Colletotrichum sublineolum DQ195716
Colletotrichum nicholsonii EU554126.1
Colletotrichum miscanthi EU554121.1
Colletotrichum jacksonii EU554133.1
Colletotrichum jacksonii EU554132.1

54/59,

96/8i

Colletotrichum axonopodi EU554086.1
Colletotrichum hanaui EU554124.1

C8 Rhipi 1 iflorum « BAM (142, KS; unclear)
P149 Garcinia madruno

P101 Garcinia madruno

= Colletotrichum gloeosporioides AJ749693

Colletotrichum fragariae DQ868498

Colletotrichum fragariae DQ868497

P3165 Hirtella americana

P86 Psychotria limonensis

335 Pharus latifolius « PHA (3, JW; C. gloeosporioides)

366 Pharus latifolius » PHA (3, KD; C. gloeosporioides)

P128 Psychotria limonensis

2165 Lithachne paucifiora+ BAM (3, KH; C. gloeosporioides)
1731 Ichnanthus pallens » PAN (3, KH; C. gloeosporioides)
P516 Chrysophylium cainito

544 Otyra latifolia « BAM (3, KD; C. gloeosporioides)

1208 Ichnanthus pallens » PAN (3, DS; C. gloeosporioides)
P170 Chrysophylium cainito

Colfletotrichum gloeosporioides AY753987

P147 Psychotria horizontalis

P2 Psychotria fimonensis

P19 Psychotria horizontalis

P22 Psychotria horizontalis

P373 Xylopia micrantha

640 Oplismenus hirtelius « PAN (3, KH; C. gloeosporicides)
1438 Chusquea simpliciflora+ BAM (3, V; C. gloeosporioides)
P29 Psychotria limonensis

357 Olyra latifolia » BAM (3, KD; G. cingulata)

364A Olyra tatifolia « BAM (3, KH; C. gloeosporioides)

397 Streptogyna americana -« EHR (3, KM; G. cingulata)

82 Panicum pitosum» PAN (3, KH; C. gloeosporioides)

354B Olyra latifolia « BAM (3, KM; C. gloeosporioides)

P206 Psycholria horizontalis

227 Ichnanthus pallens « PAN (3, KM; G. cingulata)

1891 Streptogyna americana * EHR (3, KM; C. gloeosporioides)
608 Streptogyna americana« EHR (3, AN; G. cingulata)
- P1 Psychotria imonensis

473 Chusquea simplicifiora « BAM (3, KD; G. cingulata)

P25 Psychotria horizontalis
298 Streptochaeta spicata « ANO (3, KM; C. gloeosporioides)
P167 Chrysophylium cainito

1899 Panicum pilosum * PAN (3, KM; C. gloeosporioides)
98B Panicum pilosum » PAN (3, GU; G. cingulata)
P109 Psycholria horizontalis
- C18 Rhipidocladum racemiflorum « BAM (3, LK; C. gloeosporioides)
524 Chusquea simplicifiora+ BAM (3, KM; C. gloeosporioides)
[~ C6 Oplismenus hirtelius « PAN (3, Kl . gloeosporioides)
183B Ichnanthus pallens « PAN (3, DL; G. cingulata)

1250 Chusquea simplicifilora+ BAM (3, AN; C. gloeosporioides)
92 Panicum pilosum» PAN (3, KH; C. gloeosporioides)

571 Olyra fatifolia « BAM (3, KM; C. gloeosporioides)

516A Oplismenus hirteitus * PAN (3, HW; C. gloeospotioides)
P264 Hybanthus prunifolius
880 Rhipidociadum racemiftorum » BAM (3, KM; C. gloeosporioides)
176 Ichnanthus pallens « PAN (3, KD; G. cingulata)

111 Panicum pitosum « PAN (3, KM; G. cingulata)
183A ichnanthus pallens + PAN (3, DI; C. gloeosporioides)
_|— P27B Psychotria fimonensis
63/55 511 Streptquna avmericana * EHR {1, HX; G. cingulata)
\ I'_P136 Psychotria limonensis

P28 Psychotria horizontalis

1592 Streptogyna americana * EHR (3, KM; C. gloeosporioides)
P198 Chrysophylum cainito

[I239 Oplismenus hirtellus « PAN (3, EH; C. gloeosporioides)

51/-

Colletotrichum gloeosporioides AJ749682
Colletotrichum gloeosporioides AJ749692 and AJ749692

F1G. 3. Majority rule consensus based on Bayesian and maximum likelihood analyses of putative Colletotrichum spp.
obtained by cloning from surface-sterilized leaves of grasses (numeric codes with C-prefix; boldface italics) or by culturing
from (a) grasses (number, boldface) or (b) non-grass hosts (numeric code with P-prefix) at BCI, with exemplar sequences
representing the diversity of related Colletotrichum in GenBank (marked with accession numbers). Sequences of endophytes
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TABLE IV.  Estimated class and ordinal placement based on
verified BLAST queries for endophytic fungi isolated in
culture (‘“‘isolates’’) or identified with direct PCR
(““clones”) from foliage of 11 grass species at BCI, Panama

Class® Order” Isolates  Clones
Dothideomycetes Botryosphaeriales 2.3 2.8
Capnodiales 0.5 16.7
Dothideales 0 2.8
Pleosporales 1.9 0
Eurotiomycetes Chaetothyriales 0.3 0
Eurotiales 0.3 0
Sordariomycetes ~ Boliniales 0.9 0
Calosphaeriales 0.3 0
Chaetosphaeriales 0.3 0
Diaporthales 0.9 0
Halosphaeriales 16.6 0
Hypocreales 3.2 2.8
Phyllachorales 15.2 25.0
Sordariales 2.0 2.8
Xylariales 48.0 38.9
Pezizomycetes Pezizales 0 2.8
Leotiomycetes Helotiales 0 2.8

*Only those matches for which reliable taxonomic
placement was available are included. Numbers indicate
the percent of named isolates or clones represented by each
order.

at this forest site (Arnold et al. 2000, 2001, 2003;
Arnold and Lutzoni 2007).

One of the major challenges in understanding
fungal diversity lies in delimiting species or OTUs for
meaningful ecological analyses. Discussions of such
issues frequently center on two topics: first, the
shortcomings of BLAST-based identification or de-
limitation, illustrated here by our phylogenetic
analyses (FIGS. 2, 3) and the misidentification of
some isolates as species of Claviceps on the basis of
BLAST hits alone; and second, the degree of
sequence divergence or similarity that should be used
to delimit biologically meaningful OTUs (e.g. U'Ren
et al. 2009). A further complication that has received
relatively little attention is that currently available
algorithms differ markedly in assembling genotype
groups. Comparisons between OTUs assembled with
FastGroupll and Sequencher highlighted striking
differences, with the former over-estimating richness
and recovering OTUs that were inconsistent with

phylogenetic analyses (TABLE I; FiGs. 2, 3). Studies
have contrasted Sequencher-based OTUs with those
inferred from needle and DOTUR (Arnold et al. 2007,
U’Ren et al. 2009); in each case Sequencher has
provided genotype groups that match phylogenetic
analyses.

Even with conservative estimates provided by
Sequencher, our study recovered a high richness of
Class 3 endophytes in tropical forest grasses and
revealed the overlap of these fungi with co-occurring
non-grass hosts. High diversity in planta is a consistent
feature of endophyte communities in this species-rich
forest (Arnold et al. 2000, 2001, 2003), prompting us
to revisit the implications of Carroll’s (1991) perspec-
tive that diverse endophyte communities might play a
protective role by thwarting the evolution of special-
ists or impeding attacks by diverse, antagonistic
generalists. If endophytes do play such a role, our
data could suggest an alternative host-protection
strategy for tropical forest versus grassland Poaceae,
with forest grasses exploiting the same defense
strategy as their dicotyledonous counterparts. Much
work is needed to evaluate such a broad hypothesis
and will be informed by studies of Class 3 endophytes
in wild grasses across the diversity of ecosystems in
which they occur.
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